jueves, 14 de abril de 2011

linux


¿QUÉ ES LINUX?

Linux es un sistema operativo diseñado por cientos de programadores de todo el planeta, aunque el principal responsable del proyecto es Linus Tovalds. Su objetivo inicial es propulsar el software de libre distribución junto con su código fuente para que pueda ser modificado por cualquier persona, dando rienda suelta a la creatividad. El hecho de que el sistema operativo incluya su propio código fuente expande enormemente las posibilidades de este sistema. Este método también es aplicado en numerosas ocasiones a los programas que corren en el sistema, lo que hace que podamos encontrar muchisimos programas útiles totalmente gratuitos y con su código fuente. Y la cuestión es que, señores y señoras, Linux es un sistema operativo totalmente gratuito.

Las funciones principales de este magnífico sistema operativo son:
    * Sistema multitarea En Linux es posible ejecutar varios programas a la vez sin necesidad de tener que parar la ejecución de cada aplicación.
    * Sistema multiusuario Varios usuarios pueden acceder a las aplicaciones y recursos del sistema Linux al mismo tiempo. Y, por supuesto, cada uno de ellos puede ejecutar varios programas a la vez (multitarea).
    * Shells programables Un shell conecta las ordenes de un usuario con el Kernel de Linux (el núcleo del sistema), y al ser programables se puede modificar para adaptarlo a tus necesidades. Por ejemplo, es muy útil para realizar procesos en segundo plano.
    * Independencia de dispositivos Linux admite cualquier tipo de dispositivo (módems, impresoras) gracias a que cada una vez instalado uno nuevo, se añade al Kernel el enlace o controlador necesario con el dispositivo, haciendo que el Kernel y el enlace se fusionen. Linux posee una gran adaptabilidad y no se encuentra limitado como otros sistemas operativos.
    * Comunicaciones Linux es el sistema más flexible para poder conectarse a cualquier ordenador del mundo. Internet se creó y desarrollo dentro del mundo de Unix, y por lo tanto Linux tiene las mayores capacidades para navegar, ya que Unix y Linux son sistemas prácticamente idénticos. Con linux podrá montar un servidor en su propia casa sin tener que pagar las enormes cantidades de dinero que piden otros sistemas.

Linux no sacrifica en ningún momento la creatividad, tal y como lo hacen algunas compañías informáticas. Linux es una ventana abierta por la que es posible huir hacia un mundo donde la verdadera informática puede ser disfrutada sin limites ni monopolios.
Linux es distribuido mediante una serie de distribuciones como RedHat, Slackware, Debían ... las cuales se diferencian por su método de instalación y por los paquetes (software) que viene incluido. Es posible que encuentre a la venta versiones de Linux y piense: "si, si.... decían que era gratis..." No se asuste, todo el software de Linux esta regido por la licencia de GNU, con la cual cualquier persona puede modificar un programa y venderlo según el desee, con la condición que la persona que compra ese producto puede realizar la misma acción o simplemente hacer copias para todos aquellos que lo quieran sin tener que pagar más (por lo tanto no se extrañe si encuentra distribución comerciales). Esta licencia es la garantía que afirma la absoluta libertad de este sistema operativo. Si no desea ni siquiera pagar esa mísera cantidad puede descargárselo de Internet totalmente gratis (bueno, sólo tendrá que pagar la factura de teléfono ).

Características de Linux

    * multitarea: varios programas (realmente procesos) ejecutándose al mismo tiempo.
    * multiusuario: varios usuarios en la misma máquina al mismo tiempo (y sin licencias para todos).
    * multiplataforma: corre en muchas CPUs distintas, no sólo Intel.
    * funciona en modo protegido 386.
    * tiene protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.
    * carga de ejecutables por demanda: Linux sólo lee de disco aquellas partes de un programa que están siendo usadas actualmente.
    * política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memoria.
    * memoria virtual usando paginación (sin intercambio de procesos completos) a disco: una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha (se sigue denominando intercambio, es en realidad un intercambio de páginas). Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio.
    * la memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y éste puede a su vez ser reducido cuando se ejecuten grandes programas.
    * librerías compartidas de carga dinámica (DLL's) y librerías estáticas también, por supuesto.
    * se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.
    * casi totalmente compatible con POSIX, System V y BSD a nivel fuente.
    * mediante un módulo de emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.
    * todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.
    * control de tareas POSIX.
    * pseudo-terminales (pty's).
    * emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si tu ordenador ya tiene una FPU (unidad de coma flotante), será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.
    * soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.
    * consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64.
    * soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.
    * acceso transparente a particiones MS-DOS (o a particiones OS/2 FAT) mediante un sistema de archivos especial: no necesitas ningún comando especial para usar la partición MS-DOS, parece un sistema de archivos normal de Unix (excepto por algunas graciosas restricciones en los nombres de archivo, permisos, y esas cosas). Las particiones comprimidas de MS-DOS 6 no son accesibles en este momento, y no se espera que lo sean en el futuro. El soporte para VFAT (WNT, Windows 95) ha sido añadido al núcleo de desarrollo y estará en la próxima versión estable.
    * un sistema de archivos especial llamado UMSDOS que permite que Linux sea instalado en un sistema de archivos DOS.
    * soporte en sólo lectura de HPFS-2 del OS/2 2.1
    * sistema de archivos de CD-ROM que lee todos los formatos estándar de CD-ROM.
    * TCP/IP, incluyendo ftp, telnet, NFS, etc.
    * Appletalk disponible en el actual núcleo de desarrollo.
    * software cliente y servidor Netware disponible en los núcleos de desarrollo.
Versiones

El desarrollo inicial Linux ya aprovechaba las características de conmutación de tareas en modo protegido del 386, y se escribió todo en ensamblador.

Linus nunca anunció la versión 0.01 de Linux (agosto 1991), esta versión no era ni siquiera ejecutable, solamente incluía los principios del núcleo del sistema, estaba escrita en lenguaje ensamblador y asumía que uno tenia acceso a un sistema Minix para su compilación.

El 5 de octubre de 1991, Linus anunció la primera versión "Oficial" de Linux, - versión 0.02. Con esta versión Linus pudo ejecutar Bash (GNU Bourne Again Shell) y gcc (El compilador GNU de C) pero no mucho mas funcionaba. En este estado de desarrollo ni se pensaba en los términos soporte, documentación, distribución.

Después de la versión 0.03, Linus salto en la numeración hasta la 0.10, más y más programadores a lo largo y ancho de internet empezaron a trabajar en el proyecto y después de sucesivas revisiones, Linus incremento el numero de versión hasta la 0.95 (Marzo 1992). Mas de un año después (diciembre 1993) el núcleo del sistema estaba en la versión 0.99 y la versión 1.0 no llego hasta el 14 de marzo de 1994.

La versión actual del núcleo es la 2.2 y sigue avanzando día a día con la meta de perfeccionar y mejorar el sistema.

La ultima versión estable es la versión 2.2, que soporta muchos más periféricos, desde procesadores hasta joysticks, sintonizadores de televisión, CD ROMs no ATAPI y reconoce buena cantidad de tarjetas de sonido. Incluye también soporte para tipos de archivos para Macintosh HFS, Unix UFS y en modo de lectura, HPFS de OS/2 y NTFS, de NT.

Otras Versiones:
Linux 2.0
Linux 2.2
Linux 2.3
Comparación
Se señala las diferencias de Linux con el DOS y no con otro S.O. porque la mayoría provienen del DOS.
    * No existe el concepto de unidad de disco. Todas las unidades en Linux se 'montan' como si fueran un subdirectorio más.
    * No existe el concepto de extensión del nombre de un fichero. Los ficheros pueden tener nombres de hasta 256 caracteres. Los puntos están permitidos en el nombre de un fichero.
    * IMPORTANTE: Un sistema Linux NUNCA se puede apagar por las buenas. Antes le hemos de advertir al S.O. de que vamos a apagarlo (o reiniciarlo). La razón de que esto deba ser así es para que al sistema le dé tiempo de escribir en disco todos los datos que tuviera pendientes de escribir, salir ordenadamente de todas las aplicaciones que tuviera arrancadas y desmontar todas las unidades que tuviera montadas.

Existen muchas otras diferencias (gestión de memoria plana, ...), pero las mencionadas son las que más nos pueden influir en la forma de trabajar, al menos en principio.
Conclusión
Una de las más importantes es que Linux es una excelente elección para trabajar con UNIX a nivel personal. Linux permite desarrollar y probar el software UNIX en su PC, incluyendo aplicaciones de bases de datos y X Windows. Con Linux, se puede correr un sistema UNIX y adaptarlo a las necesidades. La instalación y uso de Linux es también una excelente manera de aprender UNIX si no se tiene acceso a otras máquinas UNIX.

Linux no es solo para los usuarios personales de UNIX. Es robusto y suficientemente completo para manejar grandes tareas, así como necesidades de cómputo distribuidas. Muchos negocios especialmente los pequeños se están cambiando a Linux en lugar de otros entornos de estación de trabajo basados en UNIX. Grandes vendedores de software comercial se están dando cuenta de las oportunidades que puede brindar un sistema operativo gratuito.

Linux es, propiamente, el núcleo de un sistema operativo. Es decir, el conjunto de programas que controla los aspectos más básicos del funcionamiento de un ordenador. Su desarrollo lo inició en 1991 Linus Tovalds, entonces estudiante en la Universidad de Helsinki, en Finlandia, y se completó con miles de aportaciones a través de Internet.

domingo, 3 de abril de 2011

tecnologias y sistemas de comunicacion y enrutamiento

Concentrador 

El término ‘concentrador’ se refiere a un repetidor de puerto múltiple. Este tipo de dispositivo simplemente transmite (repite) toda la información que recibe, para que todos los dispositivos conectados a sus puertos reciban dicha información HUB. 

Los concentradores repiten toda la información que reciben y se pueden utilizar para extender la red. No obstante, debido a esta acción, puede ser que se envíe gran cantidad de tráfico innecesario a todos los dispositivos de la red. Los concentradores transmiten el tráfico a la red sin tener en cuenta la supuesta dirección; los PCs a los que se envían los paquetes, utilizan la información de la dirección de cada paquete para averiguar qué paquetes están destinados a ellos mismos. La repetición de la información en una red pequeña no representa un problema, pero para una red más grande y más utilizada, puede ser que sea necesario un componente de operación en red (como un conmutador), para que ayude a reducir la cantidad de tráfico generado innecesario.
Ejemplo:


El Routeador.

Un routeador es un dispositivo de propósito general diseñado para segmentar la red, con la idea de limitar tráfico de brodcast y proporcionar seguridad, control y redundancia entre dominios individuales de brodcast, también puede dar servicio de firewall y un acceso económico a una WAN. 

*Utilizan algoritmos específicos de ruteo para determinar la mejor trayectoria entre 2 o más dispositivos en la red. 

*Permite enlazar 2 redes basadas en un protocolo por medio de otra que utilice un protocolo diferente.


Funciones principales de los router 

* Determinan rutas y transportan la información en paquetes (switching). 

* Distribuye paquetes a diversos sectores de la red dependiendo de la dirección que vaya en el paquete. 

* Para determinar la ruta, el router, utiliza básicamente la métrica y tablas de ruteo. La métrica es el proceso de conocer cuan larga es una ruta, debido a que determina cual es la óptima.

Las funciones primarias de un ruteador son:

·         Segmentar la red dentro de dominios individuales de brodcast.
·         Suministrar un envio inteligente de paquetes.
·         Soportar rutas redundantes en la red.

Aislar el tráfico de la red ayuda a diagnosticar problemas, puesto que cada puerto del ruteador es una subred separada, el tráfico de los brodcast no pasaran a través del ruteador.

Otros importantes beneficios del ruteador son: 

· Proporcionar seguridad a través de sofisticados filtros de paquetes, en ambiente LAN y WAN.
· Consolidar el legado de las redes de mainframe IBM, con redes basadas en PCs a través del uso de Data Link Switching (DLSw).

· Permitir diseñar redes jerárquicas, que deleguen autoridad y puedan forzar el manejo local de regiones separadas de redes internas.

· Integrar diferentes tecnologías de enlace de datos, tales como Ethernet, Fast Ethernet, Token Ring, FDDI y ATM.


Ejemplo:


Repetidor



Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.
El término repetidor se creó con la telegrafía y se refería a un dispositivo electromecánico utilizado para regenerar las señales telegráficas. El uso del término ha continuado en telefonía y transmisión de datos.
En telecomunicación el término repetidor tiene los siguientes significados normalizados:
Un dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).
Un dispositivo digital que amplifica, conforma, retemporiza o lleva a cabo una combinación de cualquiera de estas funciones sobre una señal digital de entrada para su retransmisión.
En el modelo de referencia OSI el repetidor opera en el nivel físico.
En el caso de señales digitales el repetidor se suele denominar regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
Los repetidores se utilizan a menudo en los cables transcontinentales y transoceánicos ya que la atenuación (pérdida de señal) en tales distancias sería completamente inaceptable sin ellos. Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.
Los repetidores se utilizan también en los servicios de radiocomunicación. Un subgrupo de estos son los repetidores usados por los radioaficionados.
Asimismo, se utilizan repetidores en los enlaces de telecomunicación punto a punto mediante radioenlaces que funcionan en el rango de las microondas, como los utilizados para distribuir las señales de televisión entre los centros de producción y los distintos emisores o los utilizados en redes de telecomunicación para la transmisión de telefonía.
En comunicaciones ópticas el término repetidor se utiliza para describir un elemento del equipo que recibe una señal óptica, la convierte en eléctrica, la regenera y la retransmite de nuevo como señal óptica. Dado que estos dispositivos convierten la señal óptica en eléctrica y nuevamente en óptica, estos dispositivos se conocen a menudo como repetidores electroópticos.
Los repetidores telefónicos consistentes en un receptor (auricular) acoplado mecánicamente a un micrófono de carbón fueron utilizados antes de la invención de los amplificadores electrónicos dotados de tubos de vacío.
Ejemplo:



El Hub

El hub (concentrador) es el dispositivo de conexión más básico. Es utilizado en redes locales con un número muy limitado de máquinas. No es más que una toma múltiple RJ45 que amplifica la señal de la red (base 10/100).

En este caso, una solicitud destinada a una determinada PC de la red será enviada a todas las PC de la red. Esto reduce de manera considerable el ancho de banda y ocasiona problemas de escucha en la red.
Los hubs trabajan en la primera capa del modelo OSI:
Ejemplo:

Conmutador o switch
Un conmutador o switch es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.
Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las LANS (Local Area Network- Red de Área Local).
Ejemplo:



medios de transmisión física


MEDIOS DE TRANSMISION FISICA (CABLE COAXIAL, DE PAR TRENZADO Y CABLE DE FIBRA OPTICA)
Por medio de transmisión se entiende el soporte físico utilizado para el envío
de datos por la red. Las redes existentes en la actualidad utilizan como medio de transmisión cable coaxial, cable bifilar o par trenzado y el cable de fibra óptica. También se utiliza el medio inalámbrico que usa ondas de radio, microondas o infrarrojos, estos medios son más lentos que el cable o la fibra óptica. 

Cualquier medio físico o no, que pueda transportar información en forma de señales electromagnéticas se puede utilizar en redes locales como medio de transmisión. 

Las líneas de transmisión son la espina dorsal de la red, por ellas se transmite la información entre los distintos nodos. Para efectuar la transmisión de la información se utilizan varias técnicas, pero las más comunes son: la banda base y la banda ancha. 
Los diferentes tipos de red: EtherNet, TokenRing, FDDI, etc. pueden utilizar distintos tipos de cable y protocolos de comunicación.


Cable coaxial
Hasta hace poco, era el medio de transmisión más común en las redes locales. El cable coaxial consiste en dos conductores concéntricos, separados por un dieléctrico y protegido del exterior por un aislante (similar al de las antenas de TV).

Su estructura consta de un conductor central de cobre rodeado por un aislamiento de polietileno sólido o espumado. El conductor central puede ser sólido o cableado. Alrededor del aislamiento, se tiene un segundo conductor de malla de cobre estañado que funciona como blindaje contra radiaciones electromagnéticas indeseables. El blindaje puede estar conformado también por una cinta de aluminio aplicada helicoidalmente sobre el aislamiento; o bien, puede ser que un diseño de coaxial incorpore los dos tipos de blindaje. Toda la estructura está protegida con una cubierta de polietileno pigmentado con negro de humo sí el cable es para instalación en exteriores o, de PVC sí el cable es para instalación en interiores. Existen dos tipos de cable coaxial: el coaxial de banda angosta y el coaxial de banda ancha.
Algunas observaciones sobre los cables coaxiales son:
  • Se pueden instalar en topología de bus, estrella y árbol.
  • Tienen coberturas de hasta 185mts.
  • Es hasta cierto punto inmune a radiaciones electromagnéticas.
  • Ancho de banda de 10Mbps.
Existen distintos tipos de cable coaxial, según las redes o las necesidades de mayor protección o distancia. Este tipo de cable sólo lo utilizan las redes EtherNet. 



Existen dos tipos de cable coaxial: 

*cable Thick o cable grueso: es más voluminoso, caro y difícil de instalar, pero permite conectar un mayor número de nodos y alcanzar mayores distancias.


*cable Thin o cable fino, también conocido como cheapernet por ser más económico y fácil de instalar. Sólo se utiliza para redes con un número reducido de nodos. 

Ambos tipos de cable pueden ser usados simultáneamente en una red. La velocidad de transmisión de la señal por ambos es de 10 Mb. 
Ventajas del cable coaxial: 
*La protección de las señales contra interferencias eléctricas debida a otros equipos, fotocopiadoras, motores, luces fluorescentes, etc. 

*Puede cubrir distancias relativamente grandes, entre 185 y 1500 metros dependiendo del tipo de cable usado.

Cable bifilar o par trenzado
El par trenzado consta como mínimo de dos conductores aislados trenzados entre ellos y protegidos con una cubierta aislante. Un cable de este tipo habitualmente contiene 1, 2 ó 4 pares, es decir: 2, 4 u 8 hilos.

Ejemplo:



Cable de par trenzado 

Los cables trenzados o bifilares constituyen el sistema de cableado usado en todo el mundo para telefonía. Es una tecnología bien conocida. El cable es bastante barato y fácil de instalar y las conexiones son fiables. Sus ventajas mayores son por tanto su disponibilidad y bajo coste.

En cuanto a las desventajas están la gran atenuación de la señal a medida que aumenta la distancia y que son muy susceptibles a interferencias eléctricas. Por este motivo en lugar de usar cable bifilar paralelo se utiliza trenzado y para evitar las interferencias, el conjunto de pares se apantalla con un conductor que hace de malla. Esto eleva el coste del cable en sí, pero su instalación y conexionado continua siendo más barato que en el caso de cables coaxiales. Tanto la red EtherNet como la TokenRing pueden usar este tipo de cable.


Fibra óptica 
Es el medio de transmisión más moderno y avanzado. Utilizado cada vez más para formar la "espina dorsal" de grandes redes. Las señales de datos se transmiten a través de impulsos luminosos y pueden recorrer grandes distancias (del orden de kilómetros) sin que se tenga que amplificar la señal. 
Este cable está constituido por uno o más hilos de fibra de vidrio, cada fibra de vidrio consta de:
Un núcleo central de fibra con un alto índice de refracción.
Una cubierta que rodea al núcleo, de material similar, con un índice de refracción ligeramente menor.
Una envoltura que aísla las fibras y evita que se produzcan interferencias entre fibras adyacentes, a la vez que proporciona protección al núcleo. Cada una de ellas está rodeada por un revestimiento y reforzada para proteger a la fibra.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
La luz producida por diodos o por láser, viajan a través del núcleo debido a la reflexión que se produce en la cubierta, y es convertida en señal eléctrica en el extremo receptor.
La fibra óptica es un medio excelente para la transmisión de información porque tiene: gran ancho de banda, baja atenuación de la señal, integridad, inmunidad a interferencias electromagnéticas, alta seguridad y larga duración. Su mayor desventaja es su coste de producción superior al resto de los tipos de cable, debido a necesitarse el empleo de vidrio de alta calidad y la fragilidad de su manejo en producción. La terminación de los cables de fibra óptica requiere un tratamiento especial que ocasiona un aumento de los costes de instalación.
Uno de los parámetros más característicos de las fibras es su relación entre los índices de refracción del núcleo y de la cubierta que depende también del radio del núcleo y que se denomina frecuencia fundamental o normalizada; también se conoce como apertura numérica y es adimensional. Según el valor de este parámetro se pueden clasificar los cables de fibra óptica en dos clases:
Monomodo. Cuando el valor de la apertura numérica es inferior a 2,405, un único modo electromagnético viaja a través de la línea y por tanto ésta se denomina monomodo. Sólo se propagan los rayos paralelos al eje de la fibra óptica, consiguiendo el rendimiento máximo,
Ancho de banda hasta 50 ghz.
Velocidades 622mbps
Alcance de transmisión de:100km
Este tipo de fibras necesitan el empleo de emisores láser para la inyección de la luz, lo que proporciona un gran ancho de banda y una baja atenuación con la distancia, por lo que son utilizadas en redes metropolitanas y redes de área extensa. Por contra, resultan más caras de producir y el equipamiento es más sofisticado.
Multimodo. Cuando el valor de la apertura numérica es superior a 2,405, se transmiten varios modos electromagnéticos por la fibra, denominándose por este motivo fibra multimodo.
Las fibras multimodo son las más utilizadas en las redes locales por su bajo coste.
Diámetros fibra óptica multimodo: 62.5/125 Y 100/140 MICRAS

Por su naturaleza, este tipo de señal y cableado es inmune a las interferencias electromagnéticas y por su gran ancho de banda (velocidad de transferencia), permite transmitir grandes volúmenes de información a alta velocidad.

Estas ventajas hacen de la fibra óptica la elección idónea para redes de alta velocidad a grandes distancias, con flujos de datos considerables, así como en instalaciones en que la seguridad de la información sea un factor relevante.

Como inconveniente está, que es el soporte físico más caro. De nuevo, no debido al coste del cable en sí, sino por el precio de los conectores, el equipo requerido para enviar y detectar las ondas luminosas y la necesidad de disponer de técnicos cualificados para realizar la instalación y mantenimiento del sistema de cableado.
Ejemplo:


Estructura: